How to map energy sources?

Today, I’d like to share with you two mappings of energy sources which underlie all my articles.

First, here’s a family tree of as many energy sources I have been able to list until now:

Energy sources - Family tree

And second, here’s a mapping of energy sources according to their being conventional/unconventional and fossile/renewable energy sources:

Energy sources - Matrix

As you can see in this matrix, all unconventional energies aren’t renewable, and some renewables are conventional.

However, this matrix’ objective is not to identify the energy sources that we can hope to see develop in the future since a renewable energy isn’t necessarily clean. For example, nuclear fusion, which can be seen as renewable since deuterium is abundant in water, might generate radioactive waste, just as nuclear fission does. This issue might be the subject of a future article.

Posted in Uncategorized | Tagged | 3 Comments

TIR’s pillars 5/5: Transitioning to electric, plug-in vehicles

According to Jeremy Rifkin, the last pillar of the third industrial revolution is the move to plug-in electric, hybrid, and fuel-cell transportation. What is it? It is the use of energy-efficient, eco-friendly vehicles that can be connected to the electric grid.

Plugging in the vehicle would enable it to recharge, which is known as Grid-to-Vehicle (G2V): energy produced by local power plants is transported on the grid and delivered to the vehicle. This is a quite classic aspect of the fifth pillar.

Its counterpart, Vehicle-to-Grid (V2G), is more innovative: the vehicle itself becomes a small power plant, selling its excess capacity to the grid. The point is: private vehicles are usually parked around 90-95% of the time. So why not tap into this waiting time to produce and/or exchange energy? There are many ways a pluggable vehicle can generate and distribute energy:

  • from storable fuel, be it conventional fossil fuel or biofuel and hydrogen,
  • from excessively rechargeable batteries,
  • from solar panels or cells (the technology has to become economically efficient for such small and curved surfaces before it can really grow in the commercial sector).

We could imagine private vehicles become complementary power plants, sustaining the electricity offer on peak load hours, and then recharging during the night, therfore helping in absorbing the excess production of night-time hours.

The whole idea is still rather young and the challenge is to find business models where using these technologies is economically viable. However, some are already existing and should be references to keep in mind, like Autolib’ in France.

Posted in Renewables | Tagged | Leave a comment

TIR’s pillars 4/5: Developing smart grids

Today I continue with Jeremy Rifkin’s Third Industrial Revolution’s forth pillar : developing the use of “smart grids” in electricity production and consumption.

What is at stake?

Remember the TIR’s first pillar is shifting to renewable sources of energy? Yet, unlike fossil fuels and nuclear power, renewables are distributed. It is possible to find them everywhere on the planet, and anyone can access them. The impact is that anyone can become an energy producer and deliver electricity to the grid. It means energy flows now go two-ways: from the traditional energy producer to the consumers and from new energy producers to consumers, while any producer is also a consumer and any consumer might also be a producer. This adds significant complexity to the grid’s job of transporting and distributing electricity from the producer to the consumer.

Plus, as I was saying in my last article, electricity transportation causes energy losses. As a matter of fact, as they’re conducting electricity, the electric cables are heating up and the calories are lost in the surrounding space. The further away you convey electricity, the more of it you lose on the way. So an efficient grid will deliver electricity to the consumers that are nearest to the place of production. The challenge is in identifying these “nearest consumers” and allocating energy distribution in the context of diverse input points and sizes.

That’s where these new grids are called “smart”: bidirectional and localized, they optimize a complex situation and make these decisions in every instant.

So how do smart grids do that?

The first issue to solve is creating and collecting the pieces of information about the production and consumption in every place. Without this information, there is no way to optimize a situation: first know it, then manage it. It is the smart meters’ job: located in every building (home, office, production plant, etc.), they measure precisely and in real time the status of the building in terms of electrical production and consumption. They allow for example to know a lot about the consumption levels and cycles of each building in a given sector or to identify grid disturbances or temporary power interruptions.

The smart meters are by nature decentralized, and so should the decision-making centers become too. It isn’t yet the reality though. Why not? Because our electricity distribution centers are until now based of an energy production mode that is centralised: fossil fuels are concentrated in … and nuclear energy can only be exploited in nuclear plants. These places are therefore the only energy inputs and electricity distribution always starts from there. And this situation will change with the distributed renewable sources of energy.

Now that this is clear, why should the decision-making centers be decentralized? First because the decisions to be made will be extremely complex. It will be about where to convey kilowatt X, produced in point A, in order to be consumed. But also kilowatt Y, produced in point B, and so on with millions of kilowatts, producing points and consuming points, variable production and consumption, and shifting definitions of places as producing or consuming. It will likely be more simple to make decisions for a limited perimeter with limited data. Second because if there is a problem with one decision-making center, the affected perimeter might be taken over immediately by the neighbour centers.

What will be the collateral impacts of smart grids on the electricity market?

I have listed here under a number of benefits and drawbacks that will probably arise from the development of smart grids. These are the issues that will have to be managed during the change process.

Smart grids, benefits and drawbacks

Posted in Uncategorized | Tagged | Leave a comment

TIR’s pillars 3/5: Storing electricity once it is produced

Today, I go on about Jeremy Rifkin’s Third Industrial Revolution with its third pillar, which is about storing electricity.

What’s at stake?

Ever since we produce and consume electricity, the need for storage has been existing. Because our consumption is fluctuating, because transporting energy (to another consumer further away) brings about energy losses, because our energy grids don’t like ups and downs. In a nutshell, given the physical caracteristics of electricity and our electrical grids, it would be best to consume energy when and where it is produced… which is of course not always possible.

So if it isn’t that new, why does Jeremy Rifkin say that storing electricity is the TIR’s third pillar? First because renewables energies (the TIR’s first pillar) are mostly intermittent, which means the production isn’t steady. Second because renewables are distributed: isolated homes and businesses gain access to renewable energies and as they too are able to produce electricity, they need to store it.

What’s so difficult?

Of course, if we’re talking about it, it means it’s not so easy, but why? First because, just as energy transportation brings about losses, storage causes waste. The actions of storing first and then releasing energy are costing energy. The efficiency of a storage solution can never be 100%, there’s always less energy released than was stored.

Second because electricity is a secondary form of energy (one which is obtained after transformation of a primary source of energy) and therefore isn’t directly storable: you have to transfer electricity in something else to store it and release it later on.

So how do we do that at all?

Today, the most used storage solutions are simply put those with best efficiency at a reasonnable price, that is mainly :

  • Hydropower dams (about 80% efficiency)
  • Energy transfert pumping station (about 80% efficiency)
  • Electro-chemical batteries (70-80% efficiency)

On the research side, we’re currently all on hydrogen and fuel cells, compressed air, flywheels, and supercondensators. These technologies are either more efficient (and more expensive), either more simple or abundant (and less efficient). I won’t go into details about how they work and what their advantages are because you’ll find here under a table in which I have listed the main types of energy storage, their working principle and a few examples of their applications.

Recap and explanation of the main storage options to date

Storage options

Main source (in French):

Posted in Uncategorized | Tagged | Leave a comment

TIR’s pillars 2/5: Transforming buildings into power plants

According to Jeremy Rifkin, the third industrial revolution’s second pillar is transforming our buildings in small power plants. We hear about this idea since years already through developing concepts like zero-energy or PlusEnergy buildings and proliferating national and international norms, labels, and initiatives. For example right now in France, Cécile Duflot, Minister for housing, is supporting a plan to renovate old buildings and make them more energy-efficient, saying the energy transition won’t happen without energy efficiency.

But why is this so important? As I said in my last article, green energy sources are generally distributed, contrary to fossil fuels. You will find coal, oil, and gas in concentrated deposits and a big organisation (oil companies, etc.) is in charge of exploiting it. For nuclear energy, it is even more obvious: you produce nuclear energy only where a sufficient investment has been made by a private and/or public actor that will then be in charge of running the everyday operations of the power plant. Green energies on the contrary are everywhere. You can find sun, wind, and water in your garden. Sees and oceans offering the diverse renewable marine energies (geothermal, currents, waves, etc.) cover 71% of the globe’s surface, most of it being in international waters. Biomass being trash, in a mass-consumption world, it isn’t diffucult to find.

So sources of green energies are everywhere, belong to everyone, and anyone has access to them. In this article, I have shown how isolated Peruvian entrepreneurs used access to local green energy sources to develop their business when they couln’t hope being connected to the national electric grid. Green energy is decentralized, when fossil fuel are concentrated. What does it mean? It means if there is a technological solution to produce energy locally, then anyone can become it’s own energy-provider. More accurately, any construction can become a power plant of its own. And indeed, new technological breakthroughs (solar panels, micro wind or hydrogenerators, double and triple glazing, heat pumps, smart air renewal systems, smart shutter control systems, etc.) now make it possible to design and build buildings that can create energy from locally available sources to cover their own energy needs.

So now that we feel the need to shift to renewable energies and have new solutions to initiate that move, there seems to be no reason why the move wouldn’t happen.

Posted in Uncategorized | Tagged | 1 Comment

TIR’s pillars 1/5: Shifting from oil to renewable energies

The first of the five interdependent pillars supporting an upcoming third industrial revolution is probably the most obvious one. Remember Jeremy Rifkin’s idea is that the convergence of being now able to use renewable sources of energy and the internet would launch the TIR? Obviously, this means shifting from fossil fuels (coal, oil and gas) and nuclear energy to renewables. Solar, wind, hydro, geothermal, ocean waves, and biomass energies still account for only a small amount of the global energy mix. Why is it so?

First, the technologies targeting them are new while those leveraging fossil fuels have been studied and continuously improved for decades, so that their cost-effectiveness isn’t yet really competitive. Plus, as by nature, renewable sources of energy tend to be distributed, there are fewer opportunities to mass-produce green energy and cut costs by scaling up, which would be helpful in the beginning phase and is closer in terms of operating mode to how energy is produced today: centralized power plants distributing energy to all consumers.

However, renewables are on the one hand supported by governments. In Europe, one of the five targets of the ten-year growth strategy “Europe 2020” is known as “20-20-20” and is annoncing the following objectives for 2020:

  • greenhouse gas emissions 20% lower than 1990
  • 20% of energy from renewables
  • 20% increase in energy efficiency

On the other hand, renewables are unconcerned by environmental costs with which you have to deal when you’re speaking about fossil fuels, so that they have a great chance to overcome the profitability question and thrive in the coming years.

Finally, as green energies generally are distributed, the technologies associated with them necessarily involve lower initial investment costs (in absolute terms). And as those initial investments locate on a smaller scale, individuals and (even small) businesses could take over the unavoidable “pilot phase” of these technologies’ development.

All in all, it seems renewable energies are simply at the start of their development and suffer what all technologies suffer at the beginning: improvable techniques and awareness, still structuring offer and financing options, etc.

Posted in Uncategorized | Tagged | Leave a comment

Jeremy Rifkin and the Third Industrial Revolution

You probably have heard of Jeremy Rifkin these last months, haven’t you? His last book “The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World”, published in September 2011 is by now a best-seller.

American economist, writer, political advisor, and activist, Jeremy Rifkin explores the potential impact of scientific and technological changes on the economy, society, and the environment. In his book, he outlines his concept and vision of the “Third Industrial Revolution”, which he has been working on for the last years, along with numerous political leaders and entrepreneurs in the world. His action in Europe has been especially effective and has led to a formal endorsement by the European Parliament in July 2007. It has been the basis for the EU’s objectives in terms of fighting against climate change, commonly called “20/20/20”, which now are one of the five key priorities for “Europe 2020”, the EU’s 10-year economic growth strategy.

The idea of an upcoming third industrial revolution comes from the observation that industrial revolutions arise from the merging of a new source of energy and new communication technologies :

  • First industrial revolution : in America and Europe, between the 1830s and 1890s, coal and steam-powered machines enabled mass printing and railways to develop, which led to mass literacy and public schooling on the one hand, and to urban migration on the other hand. The factory economy emerged from the new concentrated literate workforce.
  • Second industrial revolution : again in the 1900s, the convergence of electrical communication and oil-powered internal combustion engines gave birth to mass production of goods, especially automobiles, which revolutionned the way individuals would go from one place to the other and relate with distance, making suburban areas emerge. At the same time, the telephone, the radio, and the television reached every home, increasing this movement and creating today’s mass consumption economy.

Since the 1990s, a new communication technology exists and has come to invest our everyday life: the Internet. On the energy sources’ side too, a change has come: the ability to use renewable energy sources to produce the electricity we need. According to Jeremy Rifkin, the convergence of both these breakthroughs will launch a third industrial revolution, foreshadowed by silent tranformations that we already observe happening today. And this would probably again change the world as we know it in only about 50 years.

In his book, besides explaining this and illustrating the silent tranformations annoucing the “TIR”, Jeremy Rifkin shows how the third industrial revolution is based on 5 pillars:

  • Shifting from oil to renewable energies
  • Transforming buildings into decentralized power plants
  • Storing electricity once it is produced (especially with hydrogen technology)
  • Developing smart grids that are bidirectionnal and localized
  • Transitionning to electric, plug-in and fuel cell vehicles

Over the next weeks, I will publish posts about each of those pillars, to go more into details about what the third industrial revolution and the future world should look like.

Posted in Overview | Tagged | 1 Comment

Autolib’, premier bilan de cette initiative de transport branchable

Pour vous souhaiter la bonne année, je vous propose de nous pencher sur le bilan à l’instant t de l’Autolib’ qui, par son “penser vert et penser partagé”, devrait contribuer à la rendre meilleure !

Un peu plus d’un an après son lancement, les parisiens n’ont pas pu passer à côté du développement fulgurant des bluecars du groupe Bolloré. Le nombre de ces petites voitures électriques de ville est en constante augmentation et les stations semblent pousser comme des champignons dans les rues de nos quartiers.

Le concept peut se résumer assez simplement : mettre à disposition des parisiens des Autolib’ de la même façon qu’existent des Vélib’. Les petites citadines totalement électriques sont à louer clés en main pour 30 minutes, 1 heure, 2 heures… payable à la minute en complément d’un abonnement journée, semaine, mois ou année (une offre essai est également disponible). On la prend dans une station et la laisse dans la plus proche de sa destination.

L’initiative, en jouant sur l’idée tendance de circuler vert et séduisant les parisiens par l’autonomie et la praticité qu’elle offre, semble remporter a priori une adhésion unanime. Cependant, j’ai lu récemment un article intitulé “70 jours en Autolib’, je reprends le métro !” qui m’a donné envie d’en savoir plus sur les réels avantages du service. La liste des articles que j’ai lus à ce sujet se trouve en fin d’article, voici ici une synthèse des pours et des contres.


  • La possibilité de rendre la voiture dans n’importe quelle station : un fonctionnement plus souple et plus adapté à un usage ancré dans le quotidien que les systèmes de location traditionnels.
  • Une voiture à boîte automatique : inhabituel pour les français, mais l’on s’y fait très vite. Et les boîtes automatiques offrent un confort, si ce n’est une sécurité, de conduite très important en ville, surtout dans les bouchons !
  • A terme, le projet devrait permettre de retirer 22 500 véhicules thermiques (individuels) de la circulation pour seulement 3 000 bluecars mises en circulation, objectif prévu pour courant 2013.
  • De même, lorsque les 3 000 bluecars seront déployées, le service devrait également permettre de diminuer de 261.000 tonnes les émissions annuelles de CO2.
  • La mise à disposition en micro-location de voitures électriques permet aux français de se familiariser avec ce type de véhicules.


  • Un niveau de sécurité déçevant : sans parler de l’unique airbag côté conducteur (les citadines en comptent généralement un second côté passager), l’Autolib’ manque surtout de l’ABS, dont elle n’est pas équipée en raison d’un vide juridique dans la législation européenne.
  • La déresponsabilisation des usagers quant à l’état de la voiture (il s’agit à la fois d’une location et d’un libre-service) semble conduire à une détérioration de l’état de propreté des voitures voire à un vieillissement prématuré de la flotte. Le système de maintenance doit être adapté aux spécificités du service.
  • A court terme, les bluecars n’ont pas tendance à retirer des véhicules de la circulation mais seulement à s’y ajouter. D’une part, l’usage n’est pas encore suffisamment entré dans les moeurs pour que cela puisse avoir un impact sur la décision d’achat d’un véhicule individuel. D’autre part, la caractéristique du système qui consiste à pouvoir rendre le véhicule dans une autre station que celle où il a été pris est trop proche de l’usage des transports en commun pour que les bluecars ne fassent pas concurrence aux métros, RER, etc. Ce ne sont pas, dans l’immédiat, les parisiens possédant déjà une voiture qui se mettent à l’Autolib’ mais ceux qui prennent quotidiennement les transports en commun.
  • Le coût d’essai  est élevé : 10€/journée + 0,23€ par minute, et risque de décourager la découverte du service.
  • La bluecar : un gabarit un peu sur-dimensionné pour Paris ? La smart aurait pu être plus adaptée à l’usage qu’il est fait du service Autolib’.
  • Si le G2V (grid to vehicle) fonctionne bien, le V2G (vehicle to grid) ne répond pas encore présent à l’appel.
  • Petits dysfonctionnements divers dénoncés par les utilisateurs (GPS inutilisable lors d’un appel au centre d’appels, vitesse d’enroulage du câble irrégulière selon les bornes, etc.).

Mon sentiment est qu’il s’agit d’une activité nouvelle reposant sur de nouveaux modes de pensée et de fonctionnement et que le projet est encore en phase de développement. Cela laisse donc inévitablement la place à des imprécisions, des scepticismes et quelques couacs. Mais l’idée me semble forte, porteuse d’avenir et susceptible de faire évoluer les usages de transport dans un sens bénéfique pour tous. Au groupe Bolloré de prendre en compte les premiers retours d’expérience afin d’améliorer le modèle. A nous (et moi la première, je ferai un article lorsque j’en aurai eu l’occasion) d’essayer le service et de remettre en question notre façon de nous déplacer.

Et vous, que pensez-vous d’Autolib’ ? Avez-vous déjà pris l’une des bluecars ? Quelle a été votre expérience client ?

A bientôt et meilleurs voeux pour 2013 !


France Diplomatie – Autolib’, zéro bruit, zéro odeur, zéro pollution : une première mondiale à Paris

Newsring – Paris : pour ou contre l’Autolib’?

BellePlanète – Autolib’ : du pour, du contre…

Le Figaro – Autolib’ : les stations ne font pas l’unanimité à Paris

L’Expansion – Autolib’ : le contre-bilan des usagers

Le nouvel Observateur – Les paris risqués d’Autolib’

Europe1 – Autolib’ : un danger sur les routes ?

Posted in Renewables | Tagged | 1 Comment

SolarKiosk: when being green is the only way to be

In our Western, developped countries, going green is often associated with green washing and brand marketing. In other places in the world, it is however a real development enabler. In some places, it is even necessary for any kind of business to just start, because energy is otherwise not accessible, or not affordable.

I have seen quite a few stories like this in the last months and will give you the links to those which marked me most. But I want here to illustrate this idea with just this German company, which took off a year ago and opened its first subsidiary in Ethiopia in March.

SolarKiosk is designing and commercializing small energy-autonomous business units. Simply said, the solar kiosks are small cubic stores, with solar panels on top and essentially build locally (except for the kiosk’s structure and specific electric components).

Placed on strategic places, they become a new exchange center for the area, be it on the trade level, or the social level. The kiosk creates a new crossroads for buying first necessities and medicine, recharging your mobile phone, exchanging news, ideas, concerns, and solutions with the shopkeeper and distant neighbours coming at the same time, etc.

In isolated, off-grids areas, leveraging the local energy sources like the sun, the wind, water streams and falls, etc. is the sine qua non condition for any entrepreneurship. This reality is further away from us than the CSR section on every company’s website, but it’s a more wide-spread, more structural, and more fundamental one. And even from our home, we can act on this, just as the founders of SolarKiosk decided to do.

About other projects using renewable energies to instigate economic development :

  • An article in French about Vietnam being aware of its potential as a renewable energies producer.
  • A post I wrote on my first blog “Un voyage de Serendip” about a transnational initiative enabling local entrepreneurs in Peru to use renewable energy sources to further develop their business.
Posted in Renewables | Tagged | 1 Comment

Cherbourg : n°1 de l’hydrolienne en Europe ?

J’ai vécu à Cherbourg adolescente et la ville est bien connue pour l’usine de retraitement de déchets nucléaires qui se trouve à proximité. L’usine draine, directement et indirectement, une bonne partie des emplois de la région et très rares sont les familles où aucun membre ne travaille, de près ou de loin, pour cette usine. D’autres industries, en lien avec la mer cette fois-ci, sont également très présentes, en particulier les chantiers navals avec les sous-marins (nucléaires) dont le bien connu Redoutable, visitable à la Cité de la Mer.

Mais voilà qu’un appel d’offre étatique en début d’année pourrait changer considérablement le paysage économique, énergétique et pourquoi pas culturel de Cherbourg. L’idée ? Une ferme d’hydroliennes dans le raz Blanchard et une usine de production d’hydroliennes dans le port de Cherbourg, qui serait ouverte par DCNS d’ici 2014 et aurait une capacité d’une centaine d’hydroliennes par an.

Pourquoi les hydroliennes ?

Je ne retiendrai que cela : l’eau étant 830 fois plus dense que l’air, les hydroliennes, homologues marines des éoliennes, peuvent produire autant d’énergie tout en étant beaucoup plus petites. “On peut être très vite en dessous du prix de revient de l’éolien offshore”, affirme Frédéric Le Lidec, directeur du développement des énergies marines chez DCNS.

Pourquoi le raz Blanchard et le port de Cherbourg ?

Le raz Blanchard est l’un des courants de marée les plus puissants en Europe : son potentiel en termes de production électrique le fait entrer parmi les localisations les plus intéressantes du monde.

Tout proche du site d’implantation de la ferme, le port de Cherbourg est l’un des rares ports en eau profonde de la région et il possède la plus grande rade artificielle du monde, autant de caractéristiques qui faciliteront l’installation des hydroliennes à la sortie de l’usine.

Pourquoi DCNS ?

DCNS est fin prêt : le groupe a acquis l’année dernière à 11% la société irlandaise OpenHydro, leader du secteur de l’hydrolien. Aujourd’hui, les deux sociétés construisent ensemble le premier parc d’hydroliennes du monde au large de Paimpol-Bréhat. Quatre des machines du parc sont construites pour le compte d’EDF. La première machine a été testée en mer à l’automne 2011 et le parc doit être opérationnel d’ici fin 2012.

La vidéo ci-dessous, produite par EDF à propos de ses quatres machines de Paimpol-Bréhat, met en images le fonctionnement d’une ferme d’hydroliennes.

Source :

En quoi cela nous concerne-t’il ?

Si Cherbourg, haut lieu de l’industrie nucléaire française, s’investit dans les énergies marines renouvelables (EMR), la France pourrait faire décoller cette industrie voire prendre la tête de son développement en Europe et dans le monde en capitalisant sur les ressources exceptionnelles qui se trouvent dans ce “bout du monde”, ainsi qu’aiment à l’appeler les locaux, qu’est la presqu’île du Cotentin.

Pour en savoir plus

DCNS : des sous-marins nucléaires aux énergies renouvelables
Cherbourg. Cap sur les énergies renouvelables pour le port du Cotentin
Le port de Cherbourg décroche les hydroliennes
DCNS veut créer une usine de production d’hydroliennes à Cherbourg
Le parc hydrolien de Paimpol-Bréhat selon EDF

Posted in Renewables | Tagged | Leave a comment